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In this paper, we present a stochastic model for the mixed-feedback loop �MFL�, a motif found in integrated
cellular networks of transcription regulation and protein-protein interaction. Previous bifurcation analysis in-
dicates that this motif can serve as a bistable switch or a clock. We investigate how extrinsic and intrinsic noise
affects its dynamic behaviors systematically. We find that this motif can exploit noise to enrich its dynamical
performance. When the MFL is in the bistable region, under fluctuation of extrinsic noise, the MFL system can
switch from one steady state to the other and meanwhile one protein’s production is amplified for more than
three orders of magnitude. Further, from an engineering perspective, this noise-based switch and amplifier for
gene expression is very easy to control. Without extrinsic noise, spontaneous transition between states occurs
as the consequence of intrinsic noise. Such a switch is controlled by the parameters and system size. On the
other hand, intrinsic noise can induce sustained stochastic oscillation when the corresponding deterministic
system does not oscillate. Such stochastic oscillation shows the best performance at an optimal noise level,
indicating the occurrence of intrinsic noise stochastic resonance which can contribute to the robustness of this
oscillator. When considering the effects of extrinsic noise near bifurcation points, a similar phenomenon of
extrinsic noise stochastic resonance is unveiled.
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I. INTRODUCTION

Cells continuously sense their environment and generate
appropriate responses. At the heart of this functionality are
the interaction networks, or webs, of biochemical molecules,
such as genes, proteins, and metabolites. The structures of a
great deal of such networks, including networks of protein-
protein interactions and transcription-regulatory networks,
have been revealed after the development of high-throughput
data-collection technologies. A major challenge in the post-
genomic era is to quantitatively understand topological and
dynamical properties and functions of these complex biologi-
cal networks that control cellular functions �1�.

Intensive statistical analysis on the transcriptional net-
works, consisting solely of transcription factors and their tar-
get genes, in E. coli and S. cerevisiae �2,3� have revealed
significantly recurring nontrivial patterns of interconnections
termed “network motif” contained in these networks. Later
mathematical and experimental research suggests that motifs
found in the transcriptional networks do perform specific in-
formation processing roles �4�. Moreover, it is found that, in
many systems studied so far, the motifs are linked to each
other in a way that does not spoil the independent function of
each motif �5�. That means the network dynamics might be
understood as combinations of these elementary computa-
tional units �6�.

At the same time, statistical analysis of networks of
protein-protein interactions in S. cerevisiae �7� also shows
these networks comprising clusters of interacting proteins.
Yet, some important information for a full description of cel-
lular functions might be lost when transcriptional networks
and networks of protein-protein interactions are separately

analyzed, because in cells these two kinds of networks al-
ways work collaboratively rather than independently.

Recently, the concept of network motifs has been ex-
tended to include two types of interactions �8�: those be-
tween transcription factors and their target genes and those
between proteins. The simplest such motif found in yeast S.
cerevisiae is the two-nodes mixed-feedback loop �MFL�
comprising one protein-protein interaction edge and one
transcriptional-regulatory edge. In this motif, as shown in
Fig. 1, protein A regulates gene b, and directly interacts with
the product of gene b, protein B. In parallel, the MFL has
been independently obtained as the core motif of several net-
works produced in an evolutionary procedure in silico aim-
ing at creating small gene networks performing specific
functions �9�. To better understand the dynamic properties of
this simple genetic circuit, a mathematic model of the MFL
based on the simplest biochemical interactions was proposed
�see Ref. �10� for details about the biological processes in the
MFL�. This model will be described in the next section. The
analysis of this model in detail reveals that there exist wide
ranges of kinetic parameters where the MFL behaves either
as a bistable switch or as an oscillator depending on whether
gene b is repressed or activated by protein A.

Though the differential rate equations approach is widely
used, its usefulness is limited when random fluctuations, or
noise, in the systems interesting us cannot be ignored, which
is always the case in biochemical processes, such as tran-
scription and translation. Noise in biological networks arises
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FIG. 1. MFL’s architecture �8�. The dotted line represents the
protein-protein interaction and the solid line represents the tran-
scription regulation interaction.
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in two ways. Intrinsic noise originates from the stochastic
nature of biochemical reactions that constitute the network.
Its magnitude is proportional to the inverse of the system
size. On the other hand, extrinsic noise originates from the
random variation of one or more control parameters in the
network, such as the rate constant of the transcription of a
specific gene �11�.

Lots of theoretical as well as experimental studies �11–21�
have been carried out on the consequence of stochasticity in
biological systems. These researches concerning noise in
biological systems improve our understanding of real life
processes. Stochasticity rooted in biochemical reactions can
give rise to phenotypic variations even in clonal cell popula-
tions under the most uniform experimental conditions �16�.
Organisms exploit this mechanism to achieve diversity and
increase the likelihood of species survival over a wide range
of environments. In addition, optimal intrinsic noise effects
have been reported in some subcellular systems. For ex-
ample, optimal intracellular calcium signaling appears at a
certain size or distribution of the ion channel clusters �17�. In
the circadian clock system and the calcium signaling system,
when the system size is small and intrinsic noise must be
considered, stochastic oscillations can be observed in a pa-
rameter region where the corresponding deterministic model
only yields steady state. Such oscillations show the best per-
formance at an optimal noise intensity, or an optimal system
size �18,19�. For extrinsic noise, it has been demonstrated
that in a bistable system derived from bacteriophage �, an
extrinsic noise source can be used as a switch and/or ampli-
fier for gene expression which could have important impli-
cations for gene therapy �11�. Noise can also have significant
effects on the stability and synchronization of genetic net-
works �20,21�. In this paper, we present the stochastic ver-
sion model for the MFL and consider how extrinsic and in-
trinsic noise affects its dynamic behaviors.

II. STOCHASTIC MODELS OF MFL

A. Deterministic model for MFL

The MFL consists of two genes, a, b, and their products,
protein A, B. Protein A regulates the transcription of gene b,
and also directly interacts with protein B to form a dimer. To
simplify the analysis, we adopted some reasonable assump-
tions, including that B does not interact with a protein A that
is bound to gene b’s promoter and the dimerization between
protein A and B is irreversible. The time evolution of the
number of the species in the MFL can be represented by the
following four deterministic rate equations �10�:

d�b�
dt

= ��1 − �b�� − ��b��A� , �1�

d�Mb�
dt

= kf�b� + kb�1 − �b�� − vMb
�Mb� , �2�

d�A�
dt

= �A − kAB�A��B� − vA�A� + ��1 − �b�� − ��b��A� ,

�3�

d�B�
dt

= kB�Mb� − kAB�A��B� − vB�B� . �4�

In these equations �b�, �Mb�, �A�, �B� denote, respectively,
the average number of free gene b, the mRNA of gene b, and
the protein A and B per cell over a cell population. In our
model and simulation next, we suppose that there is only a
single gene b copy per cell. Therefore �b� can also be seen as
the probability that gene b is free without A bound to its
promoter. Specifically, protein A binds to the b’s promoter at
a rate � and they dissociate at a rate �. mRNA Mb is pro-
duced at a rate kb when A binds to gene b or at a rate kf
otherwise. The production of protein A is assumed to be
unregulated and at a given rate �A. Without regulation, the
transcripts of gene a quickly reach the steady state, therefore
a separate description of a’s transcription and translation is
not needed in the deterministic model. The mRNA Mb pro-
duces protein B at a rate kB. Protein A forms a dimer with B
at a rate kAB only when A does not bind to gene b. vM, vA, vB
are the degradation rates for Mb, A, and B, respectively.

A detailed bifurcation analysis of this system showed that
the behavior of the MFL depends on whether protein A is a
transcriptional activator or a transcriptional repressor �10�.
By analyzing the corresponding dimensionless form of these
four rate equations, François et al. found that the bifurcation
parameters are the two strengths of B protein production,
kBkf /vM and kBkb /vM, when A is bound or not bound to the
promoter of gene b, as compared to the production rate �A of
protein A. As in Ref. �10�, we define �0=kBkf / �vM�A� and
�1=kBkb / �vM�A�. When A is a transcriptional repressor, i.e.,
�1�1��0, two stable steady states can coexist: the number
of protein A is high and that of B is low, or the number of
protein B is high and that of A is low. A and B cannot both
exist at a large amount. For instance, if A proteins are at a
larger amount than B proteins, all B quickly associate with A
and only free A and AB dimers remain. Free A binds to the
promoter of gene b and represses the further production of
protein B. On the other hand, when A is a transcriptional
activator, i.e., �0�1��1, the complexation of B with A acts
as a negative feedback which makes oscillation possible. Be-
sides, the MFL can have only one stable steady state in
which �A� is large when �0�1 and �1�1 or �B� is large
when �0�1 and �1�1.

Though deterministic rate equations are powerful tools for
analyzing dynamical behaviors of both natural and artificial
systems, they become insufficient for accurately describing
the time evolution of species when noise in such systems
cannot be ignored. There are two sources of noise in biologi-
cal systems; intrinsic noise and extrinsic noise. Different
mathematic descriptions are applied to account for them.

B. Extrinsic noise model for MFL

The two transcription rates of gene b, kb and kf, determine
the dynamics of the MFL through the bifurcation parameters,
�0, �1. Although the transcription is described as a single
biochemical reaction in our model, it in fact consists of many
sequential reactions. It is natural to assume that this part of
the gene regulatory sequence is likely to be affected by fluc-
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tuations of many internal or external parameters and it is
interesting to consider the effect of such noise on the dynam-
ics of the MFL. We vary the transcription rates by allowing
the parameters kb and kf to vary stochastically, i.e., we set
kb→kb+��t� and kf →kf +��t�. The aforementioned model
can be easily generalized to account for such extrinsic noise
by altering Eq. �2�: when kb is fluctuated,

d�Mb�
dt

= kf�b� + kb�1 − �b�� − vM�Mb� + ��t��1 − �b�� ,

�5�

and when kf is fluctuated,

d�Mb�
dt

= kf�b� + kb�1 − �b�� − vM�Mb� + ���t���b� , �6�

where ��t� is a rapidly fluctuating random term with zero
mean ���t��=0, and “�-correlated” ���t���t���=D��t− t��. D
is proportional to the strength of the perturbation. We simu-
late the extrinsic stochastic model by using the Euler-
Maruyama scheme �22�.

C. Intrinsic noise model for MFL

On the other hand, to account for intrinsic noise arising
from the limited number of molecules participating in the
molecular mechanism, one can describe the reaction system
as a birth-death stochastic process governed by a chemical
master equation �CME� which gives the time evolution of the
probability distribution for the number of every species in
the system �23�. Generally, the CME is hard to solve analyti-
cally. Instead, there have been a large number of exact or
approximate numerical simulation methods �24–26� to gen-
erate trajectories of discrete, stochastic systems. Most of
them are based on the exact algorithm introduced by
Gillespie �24�, which is rigorously equivalent to the CME.
The stochastic version of the deterministic MFL model ac-
counting for intrinsic noise is presented in Table I. The pa-

rameter 	 represents the system size and permits the modu-
lation of the number of the molecules in the system �23�.
Since the fluctuation in mRNA molecules’ abundance is the
major source of the intrinsic noise in gene expression �12�,
unlike the previous deterministic model, the transcription of
gene a should be explicitly incorporated in the stochastic
version model.

Though the exact Gillespie algorithm is widely used to
study the consequence of intrinsic noise in many systems, it
is computationally intensive when there are many molecules
and reaction events. This limitation makes it hardly appli-
cable when large system size is considered. To solve this
problem, Gillespie introduced a 
-leap method �27� which
randomly determines how many steps will take place for
each reaction channel in the next “macroinfinitesimal” time
interval. It has been proved that this method can produce
significant gains in simulation speed with acceptable losses
in accuracy when the system size is large. Therefore in our
stochastic simulation, we use the exact method for small sys-
tem size and the 
-leap method for large one.

Furthermore, when macroinfinitesimal time scales exist in
the system, an approximate time-evolution equation of the
Langevin type, termed chemical Langevin equation �CLE�
can be applied �28,18�. For the present model, the CLE reads

d�b�
dt

= r2 − r1 +
1

�	
��r2�2�t� − �r1�1�t�� , �7�

d�Mb�
dt

= r3 + r4 − r5 +
1

�	
��r3�3�t� + �r4�4�t� − �r5�5�t�� ,

�8�

d�Ma�
dt

= r6 − r7 +
1

�	
��r6�6�t� − �r7�6�7�� , �9�

TABLE I. Reactions and corresponding transition rates in the model. 	 has the unit of a volume and can
be seen as the system size.

Reaction Description Transition rate

b+A→bA protein A bound to the promoter of gene b W1=r1	=��b�A
bA→b+A protein A released from the promoter of gene b W2=r2	=��1− �b��	
bA→Mb+bA transcription of gene b with A bound to it W3=r3	=kb�1− �b��	
b→Mb+b transcription of gene b without A bound to it W4=r4	=kf�b�	
Mb→ degradation of mRNA Mb W5=r5	=vMMb

a→Ma+a transcription of gene a W6=r6	=ka	

Ma→ degradation of mRNA Ma W7=r7	=vMa
Ma

Ma→A+Ma translation of mRNA Ma into protein A W8=r8	=kAMa

A+B→AB dimerization between protein A and B
W9=r9	=

kABAB

	
A→ degradation of protein A W10=r10	=vAA

Mb→B+Mb translation of mRNA Mb into protein B W11=r11	=kBMb

B→ degradation of protein B W12=r12	=vBB

NOISE-INDUCED DYNAMICS IN THE MIXED-FEEDBACK-… PHYSICAL REVIEW E 77, 011903 �2008�

011903-3



d�A�
dt

= r8 − r9 − r10 + r2 − r1 +
1

�	
��r8�8�t� − �r9�9�t�

− �r10�10�t� + �r2�2�t� − �r1�1�t�� , �10�

d�B�
dt

= r11 − r9 − r12 +
1

�	
��r11�11�t� − �r9�9�t� − �r12�12�t�� .

�11�

Here, r1−r12 are the transition rates per cell listed in Table I,
and �1−�12 are Gaussian white noise with zero mean ��i�t��
=0 and correlation of ��i�t�� j�t���=�ij��t− t��. The transcrip-
tion of gene a is also explicitly described. It is clear from the
CLE that the magnitude of intrinsic noise is proportional to
1

�	
and depends on the dynamics of the MFL. To study the

consequence of intrinsic noise without changing the deter-
ministic kinetics, in the present work, we change the magni-
tude of the noise via the change of 	. We will mainly use the
CLE method in our simulation for convenience.

III. RESULTS

A. Extrinsic noise-induced switching and amplifying

As we have mentioned, two stable steady states of the
MFL coexist when �1�1��0, i.e., protein A is a transcrip-
tion repressor. In the absence of noise, the number of the two
proteins, A and B, in the MFL will evolve to one of the two
fixed points completely determined by the initial state of the
system. If we consider that extrinsic noise affects the two
transcription rates of gene b, kf and kb, while keeping other
parameters unaffected, novel behaviors come out.

Qualitatively, we can use the bifurcation plot to anticipate
the effect of allowing the parameter to fluctuate. In Figs. 2�a�
and 2�b�, the steady state values of the concentration of pro-
teins A and B for different values of parameter kb are plotted.
The system undergoes a saddle-node bifurcation at kb
�0.9396 mol min−1 �kf =1.2 mol min−1 and kept unchanged�
and after that can only have one steady state with a small
number of protein A and a large number of protein B. By
comparing Figs. 2�a� and 2�b�, we can anticipate that when
the system is in the bistable region and has a large number of
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FIG. 2. Results for extrinsic noise affecting kb with parameter values kb=0.8 mol min−1, kf =1.2 mol min−1, D=1.5. �a� Bifurcation
diagram for the number of protein A vs kb. �b� Bifurcation diagram for the number of protein B vs kb. The steady state with a large number
of B is plotted in the dotted line and corresponds to the right Y axis. The other two states are in the solid line and correspond to the left Y
axis. �c� Time evolution for protein A. �d� Time evolution for protein B. Other parameters are �=0.0399 min−1, �=0.001 mol−1 min−1,
vMb

=0.03 min−1, �A=100 mol min−1, kAB=1 mol−1 min−1, vA=vB=0.01 min−1, kB=3 min−1, where “mol” stands for molecules and “min”
for minutes. Here and in the following figures, if not explicitly specified, these parameters are fixed. Data in �c� and �d� are obtained by
simulating the extrinsic noise model with the Euler-Maruyama scheme.
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A and a small number of B, if the parameter kb varies, the
change in the number of protein A will be dramatically large
because of the steep top branch in Fig. 2�a�, while the flat
lower branch in Fig. 2�b� implies small variations in the
number of protein B. But if the system stays at the other
steady state in which there is a large number of B, only a
mild change in both the number of proteins B and A occurs
because of the flat lower branch in Fig. 2�a� and the flat top
dotted branch in Fig. 2�b�.

Next we incorporate extrinsic noise to make kb stochasti-
cally vary and study the temporal behavior of the system
under fluctuation. We simulated the extrinsic noise stochastic
model for the MFL described in the previous section �Eqs.
�1� and �3�–�5�� with large noise strength, D=1.5. Initially,
the system is in the bistable region �kb=0.8 mol min−1, kf
=1.2 mol min−1� beginning with the number of protein A
equal to its upper value of approximately 2000 and protein B
concentration about 0. The results are represented in Figs.
2�c� and 2�d�. In the first instance, the fluctuation in the num-
ber of A is quite large while the number of B is nearly un-
changed as we expected. Then, at around 4000 min, the
number of protein A quickly drops to the lower value. Cor-
respondingly, the number of protein B soon increases to its
upper value and stays there with quite small variations. This
phenomenon indicates that the extrinsic noise applied to the
transcription rate kb is sufficient to drive the system switch-
ing from one steady state to the other �across the unstable
steady state�. This transition is caused by the fast dimeriza-
tion between proteins A and B. When the number of protein
A is randomly fluctuated to a comparable value with that of
B, most of the A quickly form a dimer with B, leaving the
gene b unregulated. Then the number of protein B soon
builds up to a rather high level if kf is large enough.

A large fluctuation in the number of protein A before the
switching indicates that the amount of this protein is quite
sensitive to the variation in kb if much more protein A exists
in the system than protein B. But after the fast state switch at
around 4000 min, flat curves in both Figs. 2�c� and 2�d� im-
ply that the other steady state is nearly unaffected by the
fluctuation in the value of kb and is impossible to switch back
if noise strength does not increase. That is to say, dynamical
behaviors of MFL can be either sensitive or robust to the
same perturbation affecting kb depending on the specific state
in which the MFL lies �29� and under such perturbation with
large enough strength, MFL is very likely to switch to or stay
at the robust state with a large number of B but quite a few A.
We should also notice that in the fast switch, the number of
protein B increases abruptly by over three orders of magni-
tude in a very short time if kf is large enough. This feature
indicates that the extrinsic noise affecting kb might be used to
amplify protein B’s production.

Similar results can be obtained for the extrinsic noise af-
fecting kf except that the state which is sensitive to the fluc-
tuation in kb discussed above is robust to the random varia-
tion of kf and the other state that is robust to the fluctuation
in kb is sensitive to the random variation of kf. Therefore if
the MFL is affected by the perturbation affecting kf, contrary
to the result when we consider fluctuation in kb, the MFL is
very likely to switch to or stay at the state with a large
number of protein A but quite a few B. This interesting char-

acter of MFL allows us to obtain the desired state switch and
amplifying in MFL easily by choosing the appropriate extrin-
sic noise source without the need to consider accurately tun-
ing the strength and timing of noise as has been done in Ref.
�11�.

B. Spontaneous switching

Using the exact simulation method for the chemical reac-
tion system �24�, we also investigate the impacts of intrinsic
noise on MFL when it is bistable. From Figs. 3 and 5, it is
clear that if the small-size effect is taken into account,
switching between states occurs spontaneously. The sponta-
neous switching observed is highly affected by two factors:
the bifurcation parameter and the system size.

On one hand, the value of the bifurcation parameter de-
termines whether MFL could act as a switch. We fix one of
the two bifurcation parameters, kf, and let kb vary but always
keep the MFL in the bistable region. We found that when kb
is too close to or too far away from the bifurcation point,
MFL cannot act as a switch but prefers one of its two stable
steady states under the fluctuation of the intrinsic noise. In
Fig. 3, when kb=0.6 mol min−1 �top panel�, which makes
MFL deep in the bistable region, MFL spends most of the
time on the state with a large number of protein A. Though
MFL can switch to the other state with lots of B, such a
switch is quite rare and if that happens, the system will
quickly switch back to the previous state with many protein
A �data not shown�. When kb=0.9 mol min−1 �bottom panel
in Fig. 3�, which is close to the bifurcation point of the
system, the state with a large number of B is preferred and
MFL spends most of the time on this state.

We study quantitatively how kb affects the ratio between
the time MFL spends on the state with lots of protein A and
the total time we simulate the chemical reactions in the MFL.
The result is shown in Fig. 4. As kb gets closer to the bifur-
cation point, MFL spends less time on the state with large
number of A. Only when kb is around 0.8 mol min−1, the
time MFL spends on its two steady states is nearly equally
distributed. Otherwise, MFL will prefer one of its two stable
steady state, and spend most of the time dwelling on this
preferred state. In other words, when intrinsic noise is con-
sidered, only when kb is around 0.8 mol min−1, MFL keeps
the bistability predicted in the deterministic model. When kb
is away from this value, MFL tends to be monostable.

On the other hand, the system size of MFL determines the
stability of the spontaneous switch, which is a widely known
result on stochastic switch. As the system size increases, the
stability of the spontaneous switch is enhanced and charac-
teristic switching time increases drastically, which can be
seen from Fig. 5. When the systems size increases, the num-
ber of the more abundant protein will be concentrated around
the value predicted in the deterministic model and seldom
fluctuated to a small enough value which makes state switch
possible.

We also study the effect of kAB, the rate of the dimeriza-
tion between A and B on the spontaneous switch and in the
parameter region we considered, there is no obvious correla-
tion between kAB and the performance of the switch.
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In our simulation, the two factors, the bifurcation param-
eter and the system size, affect different aspects of the per-
formance of MFL when it acts as a genetic switch. Such
difference may imply that when we try to characterize a ge-
netic switch, these two factors should be both considered.

C. Intrinsic noise stochastic resonance

Besides the bistable region, the MFL can sustainedly os-
cillate if �0�1��1, i.e., protein A is a transcription activa-
tor. The MFL is a simple genetic network that can oscillate
without some specific features, such as additional positive
feedback loop or the self-activation of gene a, required in

some other biological oscillators �10�. The effect of intrinsic
noise on variety of genetic oscillators has been widely stud-
ied. For a circadian clock deep inside the oscillation region,
it is well known that if intrinsic noise resulting from small
system size has been taken into account, the oscillations will
be no longer correlate in time �30,31�. In this case, intrinsic
noise plays a destructive role. However, as the authors stated
in Ref. �31�, if the circadian clock is tuned nearly to the Hopf
bifurcation point, such a conclusion fails. Therefore it is in-
teresting for us to consider the effect of intrinsic noise in the
MFL near the bifurcation point from monostable steady state
to oscillation.

For the MFL system, when kf =0.5 mol min−1 and kb
mol min−1 varies, other parameters as listed in Fig. 2, the
system undergoes a supercritical Hopf bifurcation at kb
�1.247 mol min−1. In the present work, we focus on the
effect of the intrinsic noise when kb is tuned closed to this
bifurcation point. The following simulations are based on the
intrinsic noise model for MFL in the previous section �Table
I�.

If kb�1.247 mol min−1, the MFL can only display
damped oscillation and approach its stable steady state as-
ymptotically when intrinsic noise is ignored. But if we con-
sider small size effect, simulations via the exact method and
the 
-leap method both reveal the sustained stochastic oscil-
lation �Fig. 6�a��. The number of the species in the MFL
would not reach the steady state predicted in the differential
equations but oscillates with uncertain periods and ampli-
tudes. Interestingly, this type of uncertainty is distinct from
random noise since there are clear peaks in the power spec-
trums �Fig. 6�b��. In Fig. 6�b�, the power spectrum density
�PSD� for the stochastic oscillation of the transcripts of gene
b under three different system sizes are plotted. The control
parameter is kb=1.24 mol min−1 which is slightly less than
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the bifurcation value. The time series used to calculate the
power spectra contains 14 500 data points with an average
time interval of 1 min. The smoothed curves are obtained by
nearest averaging over 40 points from the original one. Clear
peaks appear on all of the three curves, which implies that
the time series contain periodic information or the system
dynamics generates coherent motion �32�. When the system
size increases from 10 to 105, both the signal level and noise
background decrease at the peak. For an intermediate system
size 	=103, the peak is the most pronounced among the
three. This indicates that the stochastic oscillation caused by
intrinsic noise shows some kind of coherent resonance with
the deterministic dynamics in MFL �18,33�.

The mechanism for such coherent resonance can be ex-
plained qualitatively by studying the effect of noise strength
on both the amplitude and period of the stochastic oscilla-
tions �Fig. 6�a��. When 	=10, sustained stochastic oscilla-
tion would be overwhelmed by the intrinsic noise. Therefore
both the amplitude and period of the stochastic oscillation
are quite irregular and consequently both the height and the
width of the peak on the curve for 	=10 in Fig. 6�b� are
larger than those for the other two system sizes. As system
size increases, noise strength decreases. As a result, the am-
plitude of oscillations tends to be more concentrated around
the steady state predicted in the deterministic differential
equations and the height of the peak on the PSD curve would
also decrease. Meanwhile, the oscillation period would be
more regular and lead to that the characteristic frequency of
the stochastic oscillation gets closer to the frequency of the
deterministic oscillation which occurs when kb is slightly
larger than the bifurcation value and noise effect is ignored,
and correspondingly, the peak on PSD curves becomes nar-
rower �the curves in Fig. 6�b� for 	=103 and 	=105�. Only
at optimal noise level, 	=103, is the peak most pronounced.

To measure the relative performance of the stochastic os-
cillations quantitatively, an effective signal-to-noise ratio � is

defined as in �18�, �= �P��p� / P��2�� / �� /�p�, where �p is
the frequency at the peak and P�·� indicates the power spec-
trum density at a given frequency. �=�1−�p, where �1
satisfies �1��p, and P��1�= P��p� /e with e as the base of
the natural logarithm. P��2� is the smallest PSD value be-
tween P�0� and P��p�. For example, the SNR � for the curve
of 	=103 in Fig. 6�b� can be calculated as follows: �
= �P�B� / P�A�� / ���C−�B� /�B�, P�C�= P�B� /e. The depen-
dence of � on system size for kb=1.24 mol min−1 is plotted
in Fig. 7�a�. We can see that a clear maximum is presented
for system size 	=103, which demonstrates the existence of
a resonance effect. This resonance effect is completely in-
duced by the intrinsic noise, so it is called intrinsic noise
stochastic resonance �INSR� �18�.

We also simulate the intrinsic noise model for MFL using
the CLE method when the system size 	�100 �when the
system size is small, the conditions for using the CLE are not
satisfied�. From Fig. 7�a�, the good qualitative agreement
among the exact method, the 
-leap method, and the CLE
method allows us to use the CLE for convenience. Using
CLE, we have also studied how the INSR behavior depends
on the value of the control parameter. The result is shown in
Fig. 7�b�. When the control parameter kb gets closer to the
bifurcation value, both the maximum SNR and the optimal
size become larger. For kb slightly larger than the bifurcation
value, the peak disappears and the SNR monotonically in-
creases with the increment of system size.

How do living organisms use INSR to function is still an
open question. We conjecture that INSR is a mechanism to
enhance the robustness of biological oscillators. In small sys-
tem size, which is always true in biological systems, the
MFL sustainedly oscillates in a much larger parameter region
than expected in the corresponding deterministic system. The
system size at which the SNR curve �Fig. 7� reaches the
maximum can be seen as a critical value. When the size of
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the system is smaller than this critical value, the SNR for
MFL with kb above the supercritical Hopf bifurcation value
and the SNR for MFL with kb below this bifurcation value is
of the same order and comparable. Since the SNR is calcu-
lated from the power spectrums which reflect the information
about both the amplitude and period of the stochastic oscil-
lation, similar SNR values imply that the stochastic oscilla-
tions from which the SNR is calculated are similar in many
aspects. The similarity between the stochastic oscillations
when MFL is outside and inside the domain of deterministic
oscillation could guarantee that the dynamical behaviors of
MFL would not change dramatically and result in a disas-
trous consequence for the cell if some critical parameters are
occasionally perturbed to a value below the bifurcation point.
Only when the system size is larger than this critical value,
the difference between the SNR values when MFL is outside
and inside the domain of deterministic oscillation increases
as the system size increases and, as a consequence, a small
perturbation in the parameters around the bifurcation point

would result in a big difference in the dynamical behaviors.
However, from Fig. 7�b�, we can also see that when the
control parameter becomes further away from the bifurcation
value, the critical value defined above becomes smaller,
which means that this mechanism is not robust and would be
ineffective if the perturbation of the control parameter is
relatively large.

Another possible benefit of INSR for biological oscilla-
tors is that if the system size of these genetic networks with
the module of MFL is near the critical value producing the
maximum SNR, these systems fully exploit INSR to make
the stochastic oscillations as regular as possible. It has been
reported that in intracellular calcium signaling, similar coher-
ent resonance is also observed and the realistic size of ion
channel clusters is near the optimal value generating the best
calcium signaling �17�. Direct experiments and measure-
ments of cells containing a MFL module might help us de-
termine whether in such systems SNR is always at the opti-
mal value. Since the MFL has been found as a core module
both in genetic networks in nature and the ones generated in
computer-based evolution procedures, INSR may be a
mechanism for robust functioning of the networks where the
MFL is embedded.

D. Extrinsic noise stochastic resonance

Next we consider the effects of extrinsic noise on a cur-
rent system near the Hopf bifurcation point. The extrinsic
noise model for MFL proposed in Sec. II resembles nonlin-
ear systems perturbed by noise without extrinsic periodic
force once considered in �32�. However, in �32�, noise enters
the dynamic system additively, i.e., ẋ= f�x�+��t� while in our
model, extrinsic noise in MFL is multiplicative, i.e., ẋ
= f�x�+g�x���t�, and therefore is directly coupled with the
dynamics of MFL. It has been found that under fluctuation of
additive noise, stochastic resonance �SR� occurs in autono-
mous nonlinear systems, i.e., SR without extrinsic signal
�32�: Noise induces coherent motion in a system which will
asymptotically approach the stable steady state if noise is
absent and such coherent motion is most pronounced at op-
timal noise strength.

To explore the effects of extrinsic noise near the bifurca-
tion point, we simulate the extrinsic noise model for MFL
using the Euler-Maruyama method. First we set kb
=1.24 mol min−1, which is slightly less than the Hopf bifur-
cation value and let kb be fluctuated by extrinsic noise �kf

=0.5 mol min−1�. When the noise strength D is nonzero,
MFL oscillates stochastically around the steady state pre-
dicted in the corresponding deterministic model. The fluctua-
tion increases as the noise strength becomes larger. Surpris-
ingly, as the results obtained above for intrinsic noise, the
stochastic oscillation induced by extrinsic noise is also quite
different from random noise. Clear peaks also appear on the
power spectra for the stochastic oscillations of the transcripts
of gene b �data not shown� and these peaks imply the exis-
tence of coherent motion in this system. Such coherent mo-
tion is most strong for an optimal noise strength and this
means that extrinsic noise in MFL induces the SR phenom-
enon.
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FIG. 6. �a� Time series for the transcripts of gene b: Mb for 	
=10, 	=103, 	=105. �b� Smoothed power specta for the intrinsic
noise-induced stochastic oscillation of Mb for 	=10, 103, and 105.
The control parameter is kb=1.24 mol min−1. The curve for 	=10
is obtained from the exact simulation method while the other two
are from the 
-leap method. On the curve for 	=103, point B cor-
responds to the peak, point A corresponds to the smallest PSD in the
frequency range �0,�B�, and at point C, P�C�= P�B� /e. The param-
eters ka=1 mol min−1, vMa

=0.03 min−1, kA=3 min−1, and the oth-
ers are the same as those listed in the caption of Fig. 2.
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Extrinsic noise stochastic resonance can be explained by
the twofold role noise plays. On one hand, noise stimulates
coherent motion in MFL; otherwise the system will approach
the steady state asymptotically. On the other hand, noise
spoils the coherent behaviors activated by itself. As a result,
only at an optimal noise level, the competition of the two
effects is balanced and the resonance can be observed.

We also calculate the effective signal-to-noise ratio �SNR�
� to measure relative performance of the stochastic oscilla-

tions induced by extrinsic noise quantitatively. In Fig. 8�a�,
the dependence of SNR on strengths of extrinsic noise is
plotted. When the control parameter kb is less than the bifur-
cation value, the SNR curves all have a maximum which
clearly illustrates the occurrence of stochastic resonance. The
resonance observed here is completely induced by extrinsic
noise, therefore we call it extrinsic noise stochastic reso-
nance �ENSR�. As kb approaches the bifurcation value, the
maximum of the SNR increases and the optimal noise
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strength gets smaller. Once kb is above the bifurcation value,
ENSR disappears and SNR decreases monotonically as the
noise strength becomes larger.

We also study the effects of extrinsic noise fluctuating kf.
When kb is less than the bifurcation value, kf is not a bifur-
cation parameter. In Fig. 8�b�, the dependence of SNR on
strengths of extrinsic noise fluctuating kf is plotted. Similar
stochastic resonance can also be seen clearly. There is no big
qualitative difference between Figs. 8�a� and 8�b� so that we
are firmly convinced that stochastic resonance is completely
caused by extrinsic noise. However, the maximum of SNR
for each kb when extrinsic noise fluctuates kb is larger than
the corresponding one when kf is fluctuated. This difference
indicates that when extrinsic noise directly affects the bifur-
cation value, SR will do a better performance.

The similar effect of intrinsic and extrinsic noise on MFL
when this system is near a Hopf-bifurcation point is to some
extent unexpected since intrinsic noise, arising from small
system size effect, affects every single biochemical reaction
we listed in Table I directly and simultaneously, while extrin-
sic noise, arising from the perturbation of one parameter in
MFL, only affects the transcription of gene b directly and
then propagates to other components of this genetic network.
The similarity between the shape of the curves describing the
dependence of SNR on noise strength and between the value
of the maximum on these curves may imply that at least from
the aspect of stochastic resonance, though the sources of in-
trinsic and extrinsic noise are quite different, the effect of
them on genetic oscillators cannot be well separated.

IV. DISCUSSION

Networks of biochemical molecules are responsible for
the functionality of cells. But their intrinsic complexity in-
hibits us to understand them as a whole. Instead, researchers
turn to study the building block, or motif, of these networks.
Elucidating these motifs’ dynamics and functions would shed
light on the whole networks’ behaviors. Computational mod-
els based on experimental data have been proven to be quite
useful to solve these problems. Most of these models have
the form of ordinary differential equations to describe the
time evolution of the concentration of the biochemical spe-
cies involved. But the noise from the environmental fluctua-
tions or the stochastic nature of the biochemical reactions is
unavoidable in biological systems. It is well known that
noise can have great impacts on these systems’ dynamical
properties, for example, the robustness in circadian rhythm
�34�.

In the present work, we have built the stochastic models
for the MFL, a motif found in integrated cellular networks of
transcription regulation and protein-protein interaction, and
study the effect of two sources of noise, extrinsic and intrin-
sic, on the dynamic behaviors of this motif. We found that if
noise is considered, MFL generates some different phenom-
ena not observed in the corresponding deterministic model.

When one protein in the MFL represses the production of
the other one, two stable steady states coexist. In this case,
extrinsic noise fluctuating the two transcription rates the re-
pressed gene can induce quickly switch between the two

steady states. Any one of the two steady states is sensitive to
one type of the two different extrinsic noises but robust to
the other. This feature makes this type of switch easy to
control because carefully tuned noise strength is not needed.
In the switching process, the concentration of the protein is
quite low before the switch can be amplified by more than
three orders of magnitude. For the effective genetic treat-
ments of many diseases, the expression of a transfected gene
needs to be regulated in some systematic fashion �11�. There-
fore the development of extrinsically controllable noise-
based switches and amplifiers for gene expression could
have significant clinical implications and the MFL might be
quite useful for that. To make this feature of MFL clinically
applicable, it is important to look for an appropriate noise
source. Sets of chemical reactions that affect the transcrip-
tion of gene b might be used as the noise input of this switch.

For intrinsic noise, in a small area in the bistable region of
MFL, bistability predicted in the deterministic model is
maintained and MFL can act as a spontaneous genetic
switch. The stability of such switching is determined by the
system size. Outside this area, bistability of MFL is lost.

On the other hand, it was found that the intrinsic noise can
induce sustained stochastic oscillation when the correspond-
ing deterministic system only yields steady state. In addition,
the performance of such oscillation approaches a maximum
at an optimal noise intensity, indicating the occurrence of the
intrinsic noise stochastic resonance, which has also been ob-
served in circadian clock �18� and intracellular calcium os-
cillations �19�. We have argued that INSR might enhance the
robustness of biological oscillators. However, due to the lack
of biological data concerning dynamical behaviors of MFL,
we cannot answer directly whether the size of real biological
oscillators is always near the optimal value to make the
mechanism of INSR fully exploited. For extrinsic noise, near
the bifurcation point, the consequence of extrinsic noise is
quite similar to that of the intrinsic noise and extrinsic noise
stochastic resonance can be observed. Such similarity makes
the difference between the effect of intrinsic and extrinsic
noise on MFL unexpectedly vague.

An interesting feature of MFL is the coexistence of bista-
bility and oscillation. In the deterministic model, there are
clear borderlines among the monostable, bistable, and oscil-
lation region. However, under the fluctuation of intrinsic
noise, the borderline between the monostable and bistable
region and the borderline between the monostable and oscil-
lation region become vague. Meanwhile, the oscillation re-
gion is enlarged while the bistable region is reduced. It will
be interesting to explore in future study whether this phe-
nomenon implies that oscillation is preferred when bistability
and oscillation are both present in a genetic network.

Since realistic genetic network examples of MFL are
ubiquitous in nature, the noise-induced dynamic behaviors
presented in our results may exist in many of them. Since
simple genetic network motifs are always embedded in a
larger and more complex network, under some circum-
stances, it might be not easy for us to observe in vivo the
phenomena predicted here due to the fact that MFL no longer
functions independently, but as pointed out in �5� in many
cases the functions can be preserved.
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